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ABSTRACT
Artificial intelligence (AI) supported clinical decision support (CDS)
technologies can parse vast quantities of patient data into mean-
ingful insights for healthcare providers. Much work is underway
to determine the technical feasibility and the accuracy of AI-driven
insights. Much less is known about what insights are considered
useful and actionable by healthcare providers, their trust in the in-
sights, and clinical workflow integration challenges. Our research
team used a conceptual prototype based on AI-generated treatment
insights for type 2 diabetes medications to elicit feedback from 41
U.S.-based clinicians, including primary care and internal medicine
physicians, endocrinologists, nurse practitioners, physician assis-
tants, and pharmacists. We contribute to the human-computer in-
teraction (HCI) community by describing decision optimization
and design objective tensions between population-level and per-
sonalized insights, and patterns of use and trust of AI systems. We
also contribute a set of 6 design principles for AI-supported CDS.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI.
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1 INTRODUCTION
Over the past few decades, increasing amounts of health data have
been aggregated by organizations (e.g., hospitals, health insurers)
and individuals (e.g., patients reviewing continuous glucose moni-
tors; athletes tracking smartwatch data). Data sources, including
medical claims, electronic health records (EHRs), biometrics and
lab tests, remote device monitoring, and genetic information, are
known in the clinical domain as “observational data” or “real world
evidence” (RWE)—stories of people’s health choices, treatment(s),
and health outcomes. RWE can support research at scale, how-
ever bringing many sources of rich data together is challenging.
Artificial intelligence (AI) and machine learning (ML) tools can
integrate these complex datasets to create insights. While much
work is underway to determine the technical feasibility and accu-
racy of developing AI-driven insights, the specific insights that are
considered useful and actionable by healthcare practitioners remain
unclear.

Clinicians make treatment decisions based on their medical
judgement, which may involve integrating professional experi-
ence and best-practice guidelines. Such guidelines are a consensus
approach to a clinical problem based on clinical trials and expert
opinion and may be specific to individual countries or even indi-
vidual medical associations. Best-practice guidelines are updated
with some regularity; for example, the American Diabetes Asso-
ciation updates its guidelines annually [54]. Given the way that
best practice guidelines are currently constructed (or “designed”),
introducing other forms of knowledge prompts interesting chal-
lenges. For instance: How do clinicians make sense of AI-driven
insights in relation to other information they have on hand? And
importantly, how might they trust these AI insights, given what
they know about other ways of creating knowledge in the world
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such as a clinical trial? As Beede et al. [4] state, medical organiza-
tions and practitioners will have a “difficult time dealing with AI if
it does not integrate effortlessly into their present infrastructure,
or even worse if it adds more complications.”

Here, we study healthcare practitioners’ reactions to an AI-based
clinical decision support (CDS) prototype mockup designed to dis-
play insights guiding medication selection for Type 2 diabetes mel-
litus (T2DM). Our research goals were to deeply understand the
workplace context and challenges of medication prescribing and to
acquire participant feedback to iterate on the AI-based prototype
concept. The purpose of the conceptual prototype was to provide
prescribing clinicians AI insights regarding medication regimens
for patients with poorly controlled T2DM, a condition with high
prevalence in the U.S. population and high treatment costs, account-
ing for nearly a quarter of all healthcare spending in the United
States [2]. Worldwide, an estimated 462 million individuals manage
T2DM [36]. There are at least seven major drug classes for the treat-
ment of T2DM, many of which can be taken at the same time [54].
The prototype aimed to analyze a wide set of possible treatments
and present insights regarding potential effective treatments, espe-
cially combinations of medications, for which evidence is currently
lacking in the clinical trial literature.

Using this T2DM treatment CDS could enable improved patient
outcomes, identify patients who are under-managed, reduce time
spent in trial-and-error processes to determine optimal medication
combinations, and assist patients in switching to more effective
treatments more rapidly. However, there is a gap between the ability
to produce these insights and clinicians incorporating the insights
as part of real-world patient care. Our study investigated the re-
quirements of integrating an AI-powered CDS tool into the intense
setting of the patient visit, where providers have minimal time,
information-rich EHR tools but no time to dig deeper into the
records, and may see over 900 technology alerts daily [37]. We iter-
ated on the prototype design over the course of the study through
41 interviews with primary care and internal medicine physicians,
endocrinologists, nurse practitioners, physician assistants, and phar-
macists. The AI model underlying the studied prototype was based
on a study involving N=141,625 patients [6], a significantly larger
sample size than most clinical trials. The real-world validity of
the study is powerful. What would be required for these types of
insights to be accepted by the clinical community?

Critically, we found that AI systems for medication insights
are judged against “gold standard” methods of clinical knowledge
generation, especially randomized controlled clinical trials (RCTs).
Within RCTs, trust is engendered in the precision of clinical trial
processes and the standards by which they are carefully operated to
avoid systematic bias. In this study, we evaluate how confidence or
trust in the AI-supported insights may be influenced by the user’s
understanding and confidence in the methods used to generate
the insight, a major focus of explainable AI work [58]. The proto-
type also elicited rich descriptions of clinicians’ complex decision-
making processes balancing efficacy, affordability, and patient pref-
erences.

Responding to Andersen et al.’s [49] call to further understand
“sociotechnical uncertainties” of AI systems in healthcare, we con-
tribute to the HCI community by delineating implementation barri-
ers for AI-supported CDS across the U.S. healthcare system, includ-
ing decision optimization tensions between population-level and
personalized insights, core responsibilities of the clinician and pat-
terns of use and trust of AI systems. We also contribute six design
principles for AI-supported CDS.

2 RELATEDWORK
An interdisciplinary project like ours builds on a wide array of
existing literature. Section 2.1 provides a short overview of Type 2
diabetes mellitus. In Section 2.2 we share recent research about Ar-
tificial Intelligence and Machine Learning Technologies in Human-
Computer Interaction. In Section 2.3 we briefly overview HCI re-
search regarding clinical workflows and healthcare practitioners’
use of software tools. We conclude in Section 2.4 with relevant lit-
erature about Clinical Decision Support technologies from clinical
and informatics domains.

2.1 Type 2 Diabetes Mellitus
Type 2 diabetes mellitus (T2DM) is a common chronic illness world-
wide. More than 37 million people in the United States manage
diabetes (about 1 in 10 Americans), and 90-95% of this population
has T2DM [16]. Diabetes is characterized by high blood glucose
(sugar) caused by a relative or absolute deficiency in the hormone
insulin. The pancreas produces insulin to allow glucose to enter
cells for energy [16]. If insulin is absent or a patient has insulin
resistance, glucose remains in the blood at elevated levels. Chronic
high blood sugar can eventually damage blood vessels and nerves,
leading to complications such as heart attacks, kidney failure, limb
amputations, and blindness [16, 45].

T2DM is diagnosed with a blood test, either by measuring the
glucose level or checking hemoglobin A1c (A1c), which captures
approximately a three-month window into a patient’s glucose levels
[15]. A patient’s A1c is usually elevated in diabetes (≥ 6.5%) and
lowering A1c to a personalized target is a goal of diabetes manage-
ment. Treatment for T2DM is based on lifestyle modifications but
often requires additional oral and/or injectable medications.

The first-line therapy for T2DM is usually metformin, and ad-
ditional medications are chosen based on a patient’s other comor-
bidities, personal preferences (e.g., needle aversion), and disease
severity. In more severe forms of the disease, it is often necessary to
treat with insulin, an injectable medication that can be lethal if over-
dosed [19]. Because of the large number of second-line therapies
and dearth of studies on the best combinations beyond one or two
drugs, there is significant heterogeneity in treatment combinations
for T2DM [28], suggesting the potential to improve personalized
treatment regimens for many patients.

2.2 Artificial Intelligence and Machine Learning
Technologies in HCI

HCI’s longstanding interest in interactions with AI systems has
continued to grow as machine-learning technologies have matured
and been deployed outside pure research environments. Health-
care has remained a core domain for AI/ML-driven systems. We
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focused on research from the last decade or so, corresponding to
the growth in the use and implementation of deep-learning neural
networks. For example, there have been several workshops on the
topic of HCI in AI-based healthcare applications during this time:
Realizing AI in Healthcare: Challenges Appearing in the Wild [49],
Identifying Challenges and Opportunities in Human-AI Collabo-
ration in Healthcare [51], and Patient-clinician communication:
the roadmap for HCI [64], just as a few examples, each of which
contained several papers exploring relevant issues. Similarly, the
November-December 2018 issue of interactions included a Special
Topic on Designing AI [30], drawing from the work presented at
the 2017 and 2018 AAAI Spring Symposium on designing machine
learning tools’ experience [38]. A core area was the development of
transparent, explainable, accountable, and intelligible systems [1],
in part driven by DARPA’s Explainable AI (XAI) program [59]. We
also drew on prior work on AI-supported CDS systems deployed
in the wild, such as [13].

In this paper, we focus on an area of study described by Vereschak
et al. [61] as AI-assisted decision-making, where “humans make
decisions based on their own expertise and on recommendations
provided by an AI-based algorithm.” Recent research has focused
on the importance of onboarding clinicians through appropriate
training to enable them to understand and collaborate with AI CDS
[13, 14]. Specifically, Cai et al. [13] note that importance of sharing
the known strengths and limitations of the AI-support system, the
subjective point-of-view, and its overall design objective – “what
it’s designed to be optimized for.” In this paper, we contribute to
the concept of design objective, first by showing the challenge
of a singular design objective and then by describing the list of
multiple objectives clinicians consider when recommending T2DM
medication.

Following Wang et al.’s [63] investigation of a diagnosis and
medication recommendation AI-supported CDS deployed in rural
China, they advocate for future tools to be designed to support
a human-AI collaboration paradigm. They write, “the AI system
should also be ‘cooperative’ – it can work together with human clin-
icians, fit into the local context, integrate with existing IT systems,
and improve work productivity in the workflow.” Additionally, they
push for AI systems to follow the guidelines of shared decision-
making framework taking patients’ “social, cultural, and personal
context into consideration in order to generate more personalized
recommendations.” These are essential yet challenging goals to
meet and require rich context-specific research investigations to
form a foundation for technologies which can facilitate these in-
sights. In this paper, we explore how the US healthcare system
context of diabetes care influences the use of an AI-supported CDS.
We particularly highlight misalignments regarding personalization
showing the deep complexity of this task deeply embedded in the
“art of medicine”.

2.3 Healthcare Provider Workflows and
Electronic Health Record Use

A key technology mediating healthcare activities is the Electronic
Health Record (EHR) [22], alternatively called electronic patient
records or electronic medical records. In addition to digital patient
records, EHRs also contain many additional modules, including

e-prescribing, secure email, care management information, and
care gap checklist dashboards. In their investigation of clinicians’
use of an EHR system for diabetes care, Veinot et al. [60] describe
several use categories: “priming, structuring, assessing, informing,
and continuing.” These categories show how the EHR is used both
for preparatory work (e.g., reminding a clinician about the patient’s
recent medical history; preparing for what to ask the patient dur-
ing the visit) and to orient the flow of questions, documentation,
resource-sharing, and next-steps ordering during the encounter
itself. The prototype investigated in our study was developed to
integrate into an EHR system supporting Veinot et al.’s clinical
consultation category of “informing”.

HCI researchers have also investigated tools to support patient-
clinician communication. Several studies [8, 9, 11, 39] have shown
that patient-clinician communication during a clinical encounter is
difficult, not least because of power and knowledge differences. As
a first step to support collaborative reflection and learning, Mamyk-
ina et al. [41] created a tool called MAHI, a health monitoring
application developed to assist newly-diagnosed individuals with
diabetes in developing reflective thinking skills through social inter-
action with diabetes educators. Through prompted reflection and
conversations over time with diabetes educators, patients were able
to address self-management challenges and gain important self-
efficacy in their diabetes management, moving toward an internal
locus of control.

An ongoing challenge for clinical technologies is the severe
time constraints on clinical decision-making. Many practitioners
have minimal time with patients, sometimes as little as 10 minutes
[42], and a primary care physician simply following guideline-
recommended care would require more than 24 hours/day of work
[53]. This time pressure challenges the recommended approach of
shared decision-making (e.g., [25, 43]) where clinicians and patients
discuss treatment decisions together.

Our study investigates the requirements of integrating an AI-
powered clinical decision support tool into this intense setting,
where providers have minimal time, have information-rich EHR
tools but no time to dig deeper into the records, and may see over
900 technology alerts daily [37]. We add to the HCI literature by
exploring the use of an AI-supported CDS, which introduces further
open questions for clinicians regarding trust and explainability. We
investigate how these questions intersect with clinician’s goals
within these time-constrained settings.

2.4 Clinical Decision Support (CDS) Systems in
Healthcare Settings

Clinical Decision Support (CDS) systems have long been of inter-
est to technology researchers. CDS is the process that “provides
clinicians, staff, patients or other individuals with knowledge and
person-specific information, intelligently filtered or presented at
appropriate times, to enhance health and health care” [47]. CDS
systems support clinical decision-making by presenting insights
based on patient-specific characteristics in a clinical scenario. CDS
can support many aspects of the care process, including reminders
for preventative care, diagnosis or treatment, or alerts related to
health conditions. For example, a CDS tool can support the process
that “provides clinicians, staff, patients or other individuals with
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knowledge and person-specific information, intelligently filtered
or presented at appropriate times, to enhance health and health
care” [47].

We think of CDS systems as incorporating patient-specific in-
formation about the clinical situation into an algorithm, such as a
rules-based decision tree or a machine learning model and present-
ing the output as recommendations to the user. CDS can support
many aspects of the care process, including prevention, diagnosis,
treatment and monitoring of health conditions, addressing coding
inaccuracies [5], and alerting the ordering clinician of a drug in-
teraction [44]. CDS systems may be standalone software programs
or integrated into EHRs; in either case, their ubiquity in clinical
medicine raises interesting questions about how clinicians and
other users trust such systems.

Creating effective CDS systems has proven challenging. Decades
of experience have been crystallized into the five rights of CDS:
“provide the right information, to the right person, in the right
format, through the right channel, at the right point in the work-
flow” [48]. However, a poorly designed CDS has been shown to
contribute to alarm fatigue, leading to overrides, workarounds, and
clinician burnout [33]. Even more troubling, few studies of CDS
have shown improvement in patient outcomes [26, 33]. Attaining
the “five rights” remains aspirational for many CDS technologies
[48].

Artificial intelligence-based clinical decision support has been
around for decades [40, 57]. With improvements in computational
power, it became possible to utilize extensive amounts of health
data to train AI models for CDS on a reasonable timescale. How-
ever, compared to rules-based CDS (e.g., an alert that fires when a
patient has a listed allergy to an ordered medication), the ethics and
understandability of AI-based CDS is more complex. For example,
the lack of explainability of some AI models can make it challeng-
ing for clinicians to understand the generalizability of CDS and
confounding in the data can perpetuate hidden biases [40]. Indeed,
AI models can sometimes function as “black boxes”; the “rules”
they follow to make decisions are largely opaque [20]. This lack of
transparency in how, precisely, a given AI model yields an output
poses a trust issue for the clinician, who must decide if the CDS
based on said model should be followed for their patient [20].

3 METHODS
Here we describe the prototype including its AI model and interface
(see Section 3.1) and then our study participants (see Section 3.2),
data collection (see Section 3.3), and data analysis and researcher
position (see Section 3.4).

3.1 Type 2 Diabetes Mellitus Medication
Insights Prototype

The machine learning model underlying the T2DM prototype was
trained on a large health insurance claims dataset to optimize med-
ication selection for hemoglobin A1c reduction [15]. Hemoglobin
A1c (also referred to as A1c, HbA1c, or HgA1c), is a measure of
diabetes severity. The purpose of the tool was to provide prescrib-
ing clinicians with AI insights regarding medication regimens most
likely to reduce a patient’s A1c based on similar patients. The proto-
type analyzed a rich set of treatment alternatives, includingmultiple

drug combinations that, while individually clinically validated, have
yet to be evaluated together in clinical trials, and presented insights
regarding potential effectiveness.

3.1.1 Model Concept. The underlying model producing insights
for the prototype used a dataset from medical claims data of nearly
150,000 patients with an A1c of ≥ 9%, and at least one follow-up
HbA1c measure within 3-6 months [6]. An A1c ≥ 9% is considered
“poor diabetes control” by the Center for Medicare and Medicaid
Services [18]. Themodel cohorted patients by age, number of comor-
bidities, and whether the patients had previously been on insulin
or not. Steps were taken to explicitly reduce the impact of data
and selection bias in the model [7]. By comparing the A1c levels
before and after these drug combinations were prescribed, the re-
searchers could determine the relative efficacy of different drug
insights compared to the baseline treatment of metformin alone, the
popular first-line treatment for diabetes. The output of the model
was a ranked list of medication treatment options optimized for
A1c reduction in each cohort under consideration. The model was
designed in accordance with Elevance Health’s requirements on
the responsible design of AI projects, including approval from the
Office of Responsible AI.

3.1.2 Model Data. Medical data can reveal much about the real-
world experiences of patients. Data such as the results of lab tests
can help researchers understand the potential efficacy of a treat-
ment for an individual patient. These data can present a temporal
perspective: across a patient’s illness trajectory, when and for how
long did they receive these assessments and treatments? With sub-
stantially large datasets, potential effectiveness of interventions
across populations (“cohorts”) of patients can be determined. Given
their large size and historical perspective (often delineating care
across years of a patient’s life), medical datasets can power insights
at scale. It is important to note, however, that the structured data
available in many medical datasets only captures a subset of the
full patient experience. For example, it includes no unstructured
data, such as notes written by a clinician about a patient encounter
(known as case notes) or images, let alone information patients may
convey explicitly or implicitly to the clinician that is not recorded in
the case notes. As such, a model built on structured data is unable to
account for information that might be captured in notes, images, or
other unstructured data about patient behavior change or lifestyle
modifications, such as changes in diet or exercise patterns.

3.1.3 Prototype. After the model was complete, a series of proto-
type interfaces were developed to showcase these insights to clin-
icians for feedback. These were non-interactive mockups shown
to clinicians over Zoom. Iteration cycles were rapid and included
sometimes daily changes to interface elements. Changes were made
in the prototype in response to feedback from a small number of
participants and stakeholders to rapidly home in on an optimal data
display. The below images, showing design waypoints, illustrate
diverse points in the evolution of the prototype. We discuss the
prototypes below and share participant responses in Section 4.1
and 4.2. We began with Figure 1 (Prototype A), which surfaced the
top alternate regimens to a simulated patient’s current regimen,
based on A1c change.



Healthcare AI Treatment Decision Support: Design Principles to Enhance Clinician Adoption and Trust CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 1: Prototype A. Patient data is simulated; outcomes are calculated by the model. Note that because the data is simulated,
the order of treatment regimens depicted here may not align as well with clinical expectations as a live tool.

Prototype A has three main sections. The left margin shows
core information about the (simulated) patient (e.g., name, contact
information, sex, age) and two key lab tests: the A1c measurement
and the eGFR value—a measure of kidney function—an important

consideration for certain medication. It also includes the patient’s
current treatment and key points from their medical history.

The middle section of the prototype, with the title “Patients like
Jennifer Thomas experienced the best average reduction in HbA1c
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Figure 2: Prototype B. Patient data and cohort sizes are simu-
lated; outcomes are calculated by the model. This sketch is
from Iteration 8, which was focused on exploring different
ways to show the uncertainty in the A1c change for a partic-
ular regimen.

when given the following treatments:” proposes two alternate treat-
ment regimens with best A1c results. In this case, a GLP-1 agonist,
or a combination of SGLT2 inhibitors, GLP-1 agonists, and DPP-4
inhibitors. For each treatment the view lists relevant data: the ex-
pected A1c due to medication in 3-6 months, the change from the
patient’s current levels, and the confidence interval of that change.
It also documents the patient’s current treatment, showing the same
data. Each of these sections can be unfolded by clicking to show
more information about these treatment types, including warnings
specific to those drug classes.

Finally, the top and bottom include warnings and legal dis-
claimers. Their presence both provided a place for the institution’s

Figure 3: This popup screen, also from Prototype B, shows
more detail, including estimated associated costs for individ-
ual components of the treatment. See Section 4.1 for a more
detailed discussion of the role of costs in treatment decisions.

legal team to weigh in on wording, as well as highlighting issues
that clinicians—both on the model development team and partici-
pants in the study—would expect to see in the context of similar
insights.

The prototype shown in Figure 2 (Prototype B) is one waypoint
within eight iterations, exploring user agency and visibility into
cohort details motivated by the logic behind the data model and
establishment of user trust. Prototype B highlights more data about
the simulated patient’s cohort. In addition to the age and sex data
shown in Prototype A, it includes other factors such as other co-
morbidities and contraindications that could change the optimal
drug choice, as well as suggesting that other insight types might
be available (in this case, hypertension). Prototype B allowed the
clinician to pick which factors to consider in the selection of drug
regimens.

The center portion shows three best regimen options within the
toggled categories selected by the user: Best Overall Insights, A1c
Reduction Insight, and Fewest Medications. Since the confidence
intervals as shown in Prototype A were not particularly valuable
to participants, the bottom portion includes that data redesigned:
an experimental interface for showing potential impact of those
three treatment regimens. While the Y-axis labels are not shown in
this screenshot, the fans indicate the potential range of A1c change
under each possible treatment choice. Clicking on an individual
insight brought up more details, e.g., an estimate of individual drug
costs for each type of treatment (see Figure 3).

Prototype C (Figure 4), a screen waypoint from towards the end
of the study, combines learnings from Prototype A and B while
addressing the realities of its use: a quick and meaningful compari-
son of regimens and limited time to engage with its content. We
changed to this design because some participants felt that prior
visualizations gave too much detail to decipher up front, a tough
ask in the time constrained environment of patient visits, and the
prior design departed from their expectations of the norm of other
clinical interfaces.

Prototype C includes similar information to earlier designs and
adds A1c trends over time and active medications. The center por-
tion presents a table of regimens and is the user’s main decision-
making area. To enable a quick read, the table starts with current
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Figure 4: PrototypeC shows data about a (different) simulated patient, a set of insights, and a number of treatment considerations,
both positive and negative. The popup in the top left shows the standard units for measuring eGFR, mL/min/1.73m2.

regimen and contrasts it with a list of alternate regimens. The pre-
dicted change in A1c is bold and color-coded, to emphasize possible
impact to the simulated patient’s A1c. Given participant feedback
around confidence intervals making no difference in either the
treatment choices or in their trust in the underlying model, the
designers did not include them and instead provided the average
predicted A1c change. Additionally, this prototype allows the clin-
ician to refine their search by excluding insights that include a
particular drug class—here, DPP-4 inhibitors—and provide easy
access to frequently requested filters for treatment regimens (e.g.,
changing only one medication from their current treatment; elimi-
nating treatments that require injections). Several general regimen
considerations were added, highlighting patient impacts (such as

renal, nonalcoholic steatohepatitis (NASH), cardiovascular (CV)
benefits, or weight loss), potential additional risks (such as hypo-
glycemia), and highlighting treatments requiring injections. Each
regimen could be expanded for details: showing the medications
that make up the regimen (e.g., GLP-1), their available meds in a
class (e.g., Dulaglutide, Exenatide, etc.) with dosing and route, and
General Safety Warnings (e.g., the need to avoid GLP-1 in case of
gastroparesis).

3.2 Participants
We conducted semi-structured interviews with 41 U.S.-based health-
care practitioners (see Table 1) during a five-month period from
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Table 1: Participants

Participant
Notation

Role Type Count

PCP 1–15 Primary Care Provider (MD/DO) 14
NPPA 1–18 Nurse Practitioner (NP) / Physician

Assistant (PA)
18

Endo 1–5 Endocrinologist (MD/DO) 5
Pharmacist 1–2 Pharmacist 2
IM 1–2 Internal Medicine (MD/DO) 2

Total 41

January to May 2021. A recruiting agency selected diverse partici-
pants from practices across a variety of U.S. states, clinic sizes, and
numbers of clinicians, as well as gender, years of experience, and
racial and ethnic diversity. We used Reckner, a recruiting agency
with a focus on providing participants in healthcare, both to re-
cruit difficult-to-find participants like endocrinologists, as well as
preserving anonymity of the process so participants were not in-
fluenced by researchers being connected to a specific healthcare
institution. Our research goals were to deeply understand the work-
place context and challenges of medication prescribing and to use
participant feedback to carry out rounds of iteration on the AI-based
prototype concept. This study was determined to be exempt from
IRB review by the WCG Institutional Review Board. Participants
were compensated for their time.

By interviewing a diverse panel of practitioners, we wanted to
ensure that we understood the workflow processes of a variety of
healthcare roles. We also sought to understand the perspectives
of participants working in primary care clinics (the first and most
frequent clinician many patients will see) as well as individuals
working in what are commonly called “specialist” clinics (these
doctors—in this case, endocrinologists—often require a referral
from the primary care doctor for patients who could benefit from
their specialist knowledge).

Inclusion criteria required that participants (except for the phar-
macists) currently provide T2DMcare and actively prescribed T2DM
medication. For context, depending on a U.S. state’s guidelines, not
only Endocrinologists and Primary Care/Internal Medicine physi-
cians can prescribe medication but also Nurse Practitioners and
Physician Assistants as well as some Pharmacists. Therefore, all
the interviewed participants had the potential to prescribe T2DM
medication. Our recruiting process began with Endocrinologists,
and then as stated in the Findings, we learned that Endocrinologists
felt that the CDS was not as valuable to them as it could be to
generalist roles. We then interviewed Primary Care and Internal
Medicine physicians and Nurse Practitioners and Physician Assis-
tants. Finally, knowing that Pharmacists can prescribe medications
and critically that they often have cost-related conversations about
medication with patients, we felt that there was potential relevance
of pharmacist knowledge to the larger sociotechnical system of di-
abetes medication prescribing, so we sought to gain their feedback
on the tool as well. The pharmacists interviewed in this study were
involved with Case Management programs for T2DM care.

3.3 Data Collection
Three human-computer interaction researchers conducted remote,
one-on-one, semi-structured interviews with the participants listed
in Table 1 via Zoom. Sessions lasted between 45 minutes and one
hour. The study sessions began with questions probing participant
experiences of providing care to patients managing diabetes. In
particular, the interviewer sought to understand current medication
prescribing workflows. Then, the researcher shared their screen
to present the image of the prototype tool and led a discussion.
The researcher probed the participants’ initial reactions to the tool
and asked targeted questions about components of the prototype.
Following research practices similar to previous literature [27, 31],
the researcher also used the prototype to prompt further reflections
on current practices and ongoing patient care challenges. As we
gained insights during these interviews, we conducted dozens of
iterative design revisions to align the prototype’s interface and
workflows with the sociotechnical complexity and clinical needs
uncovered.

3.4 Analysis and Researcher Position
Two team researchers led the analysis process and regularly dis-
cussed ongoing analytical approaches and emerging themes with
the research team. Our data corpus included 677 pages of transcripts.
The interviews were transcribed and then analyzed following Braun
and Clarke’s thematic analysis method [17]. Following the steps
of the thematic analysis process, we began by open-coding several
participant transcripts to gain familiarity with the data. We primar-
ily coded at the sentence level, but some coding took place at the
paragraph level to understand sequences of medication prescribing
and decision-making. Through a process of iterative analysis and
comparison, we arrived at a set of axial codes reflected in the themes
of this paper: decision optimization tensions between population-
level and personalized insights, core responsibilities of the clinician,
and patterns of use and trust of AI systems.

Our author team has HCI and clinical (including subspecialist
diabetes) backgrounds, with many years of experience working in
digital health technologies. Our team’s interdisciplinary expertise
was helpful to deeply understand the mindsets of our participants
and to consider the important characteristics of this sociotechnical
setting. To make the best possible prototype we followed a user-
centered research approach to support participants in expressing
their lived experience, workflows, challenges, and support oppor-
tunities.

4 FINDINGS
First, we share in Section 4.1 what it means to optimize a medication
selection decision for T2DM and how those findings were reflected
in prototype design iterations. Then, we share in Section 4.2 work-
flow findings and patterns of use of a CDS tool in the clinic, and
finally describe in Section 4.3 considerations relevant to trust for
AI-supported clinical decision support technologies.
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4.1 “Optimizing” the decision: Distinction
between ‘population-level’ insights (‘people
like you’) and n-of-1 personalized
medication insights

Our prototype used claims and other structured medical data as an
evidence base for the AI model. The medication insights produced
by the AI present comparisons with other people of similar age and
health status [6]. We represented this process using text such as:
“there are 4,781 patients just like Jennifer with Type 2 Diabetes”
(Prototype B) and “286,058 similar patients experienced the greatest
average reduction in A1c with the following treatments” (Proto-
type C) to illustrate that the insights stemmed from cohort com-
parison. However, while several participants viewed the prototype
positively, especially in the comparison of certain combinations of
medications, they also noted that optimizing for A1c reduction is
only part of the ultimate medication selection decision. Critically,
participants highlighted that T2DM medication effectiveness also
depends on how well the patient can fit the medication regimen
into their everyday life. Medication decisions are personalized and
optimizing for A1c reduction alone does not match the prescrib-
ing decision complexity. Participants emphasized that medication
insights need to balance elements of biological efficacy, affordabil-
ity, and patient lifestyles and preferences. Further iterations of the
protype thus included options for personalized filtering (Prototype
C). See Table 2 for considerations participants described when they
prescribe medications for diabetes management.

4.1.1 T2DM Medication decisions include balancing efficacy, afford-
ability and patient lifestyle. Participants weighed several factors
when recommending medication for a specific patient. Determin-
ing what treatment(s) will be the most “effective” is a complex,
patient-specific question. Our initial prototype presented insights
for optimized A1c control. Participants corroborated the importance
of this outcome, describing how keeping down A1c is a key goal in
T2DM management. For example, PCP 3 noted: “I had somebody in
yesterday. I mean they’ve been in good control [of their glucose] but
I don’t know, over the last six months their control has deteriorated
not horribly from a hemoglobin A1c of 6.8 to 8. Which, I certainly
try to keep folks below 7.5 if I can.” PCP 3 and others discussed that
they often request diabetic patients to have their blood drawn in
time for the results to be ready for discussion during their visit.
A1c readings can change over time, but it can be unclear what is
influencing shifts in the score (e.g., diet, exercise, medication, other
illnesses). Participants also noted some external incentives in their
prescribing decision-making. For example, some participants who
practiced under Value-Based Care payment models explained that
the number of diabetic patients under a specific A1c reading was
also monetarily incentivized in end-of-the year payments.

Participants also described that A1c control may sometimes
be a secondary concern in T2D prescribing decisions. Medication
costs can often guide specific regimen selection. At the moment
of prescription, participants stated that they often do not have the
complete details about the final cost of a medication for a patient.
When reviewing expected cost shown within the prototype, Phar-
macist 2 asked if the tool drew on information about the patient’s

specific insurance plan and their deductibles, which may change
over the course of a calendar year:

“Would it reach down as far as seeing if that patient
has met their [insurance] deductibles for the year? So is
that just a block price that [the prototype] has pulled
out of some database? [Do] they get specific as to that
patient’s exact cost, and that exact cost, as it progresses
throughout the year? Because not necessarily what a
patient pays in January is what they’re going to be
paying in August.” (Pharmacist 2)

In the United States, there are many healthcare insurance compa-
nies, including some government-supported insurance options (e.g.,
Medicare and Medicaid). Participants described how each insurance
plan may negotiate and determine coverage for medications individ-
ually, so one patient’s healthcare insurance may cover a particular
medication, and another patient’s healthcare insurance may not.
In addition, some name-brand drugs also have patient assistance
programs. Furthermore, medical plans often have deductible limits
that need to be met before the plan starts paying for medications or
medical services: for example, the patient pays the first $500 of any
medical costs in a year. After the deductible is met, some insurance
providers will cover part of the cost of a medication, leaving the
patient to cover the remaining amount. The amount a patient pays
is called their out-of-pocket cost(s).

Ultimately, the variability of patients’ healthcare insurance cov-
erage(s) (as well as lack thereof) introduces strong uncertainty
into the actual cost of a patient’s medication when they pick it
up from the pharmacy or have it delivered to their home. PCP 2
described how lack of insurance coverage led to a recent patient
“haphazardly picking his medicines because he couldn’t afford to get
’em.” Similarly, PCP 13 noted that throughout the COVID-19 pan-
demic, there were many layoffs, which could eliminate a patient’s
employer-sponsored health insurance, requiring clinicians to go
“back to the drawing board” (PCP 13) for more affordable medica-
tions. Therefore, an individual’s ability to pay out-of-pocket and the
exact coverage of their healthcare insurance can influence which
medications are ultimately prescribed. Accurate patient-level costs
are thus a desired feature of a CDS tool for diabetes management.

Next, taking medications creates burden in addition to other life
responsibilities. To reduce patient burden, and sometimes to also re-
duce cost, fewest medications was another important consideration.
NPPA 11 describes how a patient request for the fewest number of
medications influences her regimen recommendations:

“I’m like, yeah, some of these [medicine insights] make
really reasonable sense and they’re game-changers in
the management of diabetes. But if they [patients] say
least medications, then you know, you at least can take
them off your radar and just think about the other
choices quickly” (NPPA 11).

We incorporated these findings into Prototype B with an optimiza-
tion toggle (see Figure 5) where clinicians could optimize based
on several factors including A1c reduction, lowest cost treatment,
and/or fewest medications.

Later versions of the prototype (e.g., Prototype C) were designed
to support “shared decision making” [43], where clinicians and pa-
tients could review treatment options together and tailor regimens
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Table 2: Type Two Diabetes Mellitus Medication Decision-Making Considerations

Consideration Rationale Representative Quote

HbA1c Reduction/ Glu-
cose Optimization

Better blood sugars control can help reduce long-term
effects of high blood sugar including kidney failure,
blindness, heart attacks, strokes, infections, and ampu-
tations.

“I certainly try to keep folks below [hbA1c] 7.5 if I can”
(PCP 3)

Medication Costs A patient’s ability to afford treatment is based on their
specific health insurance coverage and ability to afford
out-of-pocket medication.

“Or you know ‘at pharmacy the medication was too
expensive. I didn’t pick it up and I didn’t think to call
you.’ I’ve had plenty of those. ‘Oh the pharmacy said I
needed [prior authorization] and they were supposed to
message you but they never did.’” (NPPA 18)

Number of Medications The number of medications that a patient will take
has implications for complexity of purchasing (e.g., at
the pharmacy) and complexity of taking medications
(e.g., many pills per day). Similarly, this is an impor-
tant consideration when an individual is also taking
medication for other conditions (polypharmacy).

“But if they [patients] say least medications, then you
know, you at least can take them [some medications]
off your radar and just think about the other choices
quickly.” (NPPA 11)

Drug Delivery and Stor-
age Method

Some diabetes treatments require injection. When pa-
tients are worried about or unable to use needles, clini-
cians may lean toward oral medications. Also includes
requirements for drug storage and dosing complexity.

“If he is adamant to not add any more injectables, I could
talk to him about some of the oral medications. We may
not get as much efficacy as another injectable, but that’s
something we could try.” (PCP 2)

Patient’s Daily Routine Includes questions about the requirements of the pa-
tient’s daily life including their job, childcare respon-
sibilities, location, and number of breaks day-to-day,
and many other aspects with relation to the ability to
carry out certain medication regimens.

“What they do work-wise, how hectic their schedule is,
you know, are they going to be able to take something,
um, 30 minutes before? Are they like rushing out the
door in the morning? And then when it comes to once a
week or every day just again their lifestyle.” (NPPA 2)

Secondary Benefits Some diabetes medications have beneficial impacts
for other organ systems, e.g., renal (kidney system)
benefits, cardiovascular benefits. Some medications
also support weight loss which may also be beneficial
(e.g., for mobility increase).

“Both of those classes will typically help with weight loss
and neither, neither one will cause hypoglycemia. So they
tend to, and they both offer a cardiovascular protection.”
(Endo 3)

Potential Contraindica-
tions and Side Effects

Risks and side effects associated with certain medica-
tions (e.g., going hypoglycemic, introducing a fall risk
for elderly patients, adequate kidney function).

“He’s had no hypoglycemic events or severe interactions
and he has no symptoms of any kind of renal impair-
ment” (NPPA 1)

Figure 5: Redesigned Toggle for Optimization Selection (Pro-
totype B)

with patient preferences (such as avoiding injections) considered
(see Figure 4). Such changes improved clinical relevance. For ex-
ample, regarding drug delivery and storage method, participants
described how some patients were frightened of needles. Therefore,
even if an injectable medication was the recommended clinical

treatment, physicians were likely to recommend an oral medication
instead. “If he is adamant to not add any more injectables, I could
talk to him about some of the oral medications. We may not get as
much efficacy as another injectable, but that’s something we could
try” (PCP 2). Given that this was a key medicine characteristic that
is important to discuss with a patient, we highlighted this in the
prototype (see Figure 4) with a “Injectable” callout. Participants
also considered how the medication needs to be stored and whether
the patient has the ability to do so (e.g., having access to a refriger-
ator for certain medications). Relatedly, dosing complexity—how
many times a person needs to take the medication over the course
of a day—was also an important factor. For instance, metformin
has two formulations, one taken once and the other taken twice a
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day. Other medications, such as the GLP-1 class, are injections but
taken weekly, whereas insulin is usually a once- to four-times-a-day
injection or infused by a pump.

Drug delivery method also has implications regarding how it fits
into the patient’s daily routine:

“I kind of take into consideration, you know, their life,
you know what they do work-wise, how hectic their
schedule is, you know, are they going to be able to take
something, um, 30 minutes before? Are they like rushing
out the door in the morning? And then when it comes
to once a week or every day just again their lifestyle.”
(NPPA 2).

While we did not create a daily routine call-out in the interface,
routine is an essential backdrop to medication decision-making.

Some diabetes medications have secondary benefits. For exam-
ple, beneficial impacts for other organ systems such as the renal
(kidney) system or the cardiovascular system. Some medications
also support weight loss which may also be beneficial (e.g., for mo-
bility increase, or decreased insulin resistance). When discussing
medicine selection, Endo 4 described how she will often prescribe
two main first-line treatments, saying “both of those classes will
typically help with weight loss and neither, neither one will cause
hypoglycemia. So they tend to, and they both offer a cardiovascular
protection.”

Endo 4’s quote also shows a consideration for the potential
contraindication of hypoglycemia. Potential contraindications and
side effects may be associated with certain medications (e.g., hypo-
glycemia, fall risk for elderly patients, inadequate kidney function).
NPPA 1 notes that he watches out for his patient’s potential con-
traindications, saying about a specific patient: “he’s had no hypo-
glycemic events or severe interactions and he has no symptoms of any
kind of renal impairment,” whereas NPPA 18 describes a patient she
prescribed medication to and then “they started taking it and they
got side effects” (NPPA 18). PCP 2 notes that he sometimes struggles
to remember potential contraindications: “there’s so many out there
that it’s difficult for us to always remember all of ’em and maybe
having something like this [the prototype] would be very helpful”
(PCP 2).

In summary, algorithms that over-optimize on outcomes metrics
can lead to unrealistic insights for real world clinical decision mak-
ing. The clinician needs to understand what is being “optimized”
in the insight so that they can interpret the information and add it
to their larger decision-making process. There is an opportunity
to design AI-insight processes to consider patient-specific factors
that clinicians weigh as they make medication recommendation
decisions, as we have done in our prototype (see Figure 2, 3, and
4) to better match the complex interrelated factors important for
these decisions.

4.2 Core Responsibilities of the Clinician
Another factor relevant to decision support is how the system
insights sit in complement to the core responsibilities of a clinician
regarding their expertise and the requirements of the patient visit.

4.2.1 Perceived Expertise. A tool that shares insights that a physi-
cian feels they already know well is not likely to be seen as valuable.
For instance, some participants looked at insights generated from

the prototype, commenting, “the big picture is I don’t turn to an EMR
to tell me how to treat a simple – not simple, but. . . – a disease like
diabetes, which is something that I treat on a daily basis. I use 20
years of clinical experience” (IM 2) or “I know what the options are for
treating diabetes” (IM 1). T2DM is a common diagnosis in the United
States, and therefore, many physicians have frequent experience
diagnosing and recommending treatment and lifestyle changes rel-
evant to diabetic patients. All participant endocrinologists felt that
they did not need a tool to recommend medications for diabetes
because this is their specialty area. One endocrinologist participant
said regarding the insight calculations: “most experienced doctors
are probably doing that in their head without the help of this” (Endo
3). However, other participants including a few primary care doc-
tors, nurse practitioners, and physician assistants, noted that they
thought it could be a useful tool to compare against their line of
thinking and surface potential contraindications. These comments
clarified for the design team that individuals with less specialty
training may be more interested in this type of CDS tool.

Other participants noted that whatmight be simple for a clinician
to understand could be useful to show a patient. For example, react-
ing to our prototype: “Oh yeah, that’s good...You could print it for the
patient” (NPPA 17), which could support shared decision-making
regarding the complex considerations surrounding medication regi-
men choice. NPPA 3 agreed with this sentiment, noting that “I think
that could be a joint decision-making tool” (NPPA 3), but stressed that
she thought it would be most useful for discussion with patients
on complex medication regimens.

4.2.2 Patient Visit Time Constraints. The limited time available for
the clinical encounter is an essential design consideration factor.
Participants consistently described the time-constrained nature of
a patient visit. Participants focused effort on having face-to-face
time with the patient as much as possible instead of looking at
a computer screen. Face-to-face communication is important to
facilitate connection, information-sharing, and open discussion.
Particularly for T2DM, lifestyle changes and medications can be
challenging to self-manage and require significant patient effort
and understanding. Therefore, our participants described the im-
portance of getting patient buy-in for these processes to manage
their diabetes. However, face-to-face communication can be chal-
lenging when much of a clinician’s workflow includes documenting
notes and e-prescribing conducted via digital device (e.g., desktop
computer, laptop, tablet). While the prototype could potentially
provide a substantial amount of detail regarding future predictions,
it was clear that a patient visit is not a time when clinicians can
do research. “I don’t know, per se, that I have the time during each
visit to kind of go into this” (Endo 3). Therefore, insights should be
delivered to support the time constrained needs of clinicians in the
moment.

In addition to summarized insights, clinicians describedmoments
in a patient’s treatment when a medication insight tool would be
most helpful. When a previous medication was not as successful
as desired, clinicians were most interested in next-step treatment
insights from a CDS tool. Primary care participants described that
this is often the point when they refer patients to endocrinologists.
NPPA 2 described how she would seek the advice of the prototype
when a need was identified to change her patient’s medications: “If I
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was going to change prescriptions for a patient. So after we determined
‘hey a change is necessary’, I would probably use it there” (NPPA 2).
This quote underscores that there are certain times in a patient’s
illness trajectory when medication insight tools become especially
helpful. This learning prompts further design questions: should the
prototype show insights for patients with an A1c ≥ 9% as part of
the workflow for every patient visit, or are there are certain triggers
(e.g., threshold of A1c percentage increase) that could “push” the
insights into a clinician’s workflow?

Overall, many participants felt that they had a good grasp of the
basics of T2DM medication prescribing. Yet many participants also
had patients whowere above the desired A1c threshold. Participants
stated that gaining patient buy-in to take the prescribedmedications
and factors outside of specific medications such as diet and exercise
played a major role in the scores. However, clinicians also need to
be aware of new medications and their effects. Indeed, IM 2 notes
this, saying: “Most patients need two or three different products and
there’s different combinations of products and there’s always new
things coming out. So I try to stay abreast of the new information
and see what I can apply to the patients” (IM 2). A CDS system
which pulls from recent medical information may be able support
ongoing learning about new medications. Finally, some patients
may prefer to optimize for the very lowest A1c score possible, and
therefore having a view which optimizes for elements which are
most important to patients may better support shared decision-
making beyond current approaches.

4.3 Patterns of Use and Trust in AI Systems
In this section, we discuss findings regarding what we call the
“front-loading” of trust for AI-informed CDS and trust related to
the type of data powering the AI models.

4.3.1 “Front-loading” trust for AI-informed CDS. Participants re-
ported wanting to determine their trust of an AI insight system
when first introduced to the tool. When participants saw an AI-
supported insight for a medication or selection of medications, they
wanted to know how the insight was calculated and the outcomes
the insight prioritized. For instance: “And where they’re pulling this
information from, is it from a EHR? Is it thorough? Up-to-date?” (PCP
2) and “I’d like to see the data and I’d like to see, you know, who
made it” (NPPA 3). Once they determine that trust, they can quickly
utilize the insight within their workflow. Ultimately, technologies
used at point-of-care need to be streamlined to ensure that a clin-
ician can spend minimal time clicking through screens and can
focus their attention on the patient. Our participants did not want
to validate insights every time they used the CDS tool. Unless the
insight was unexpected, in which case participants wanted to look
more closely at the underlying logic (similar to findings from Jacobs
et al. [31]), participants did not expect to spend time investigating
the underlying rationale behind each AI-produced insight. Instead,
they will determine trust once, based on initial use experiences and
contextual credibility (e.g., the backing of medical institutions). In
short, participants underscored that the care visit is not the right
time to do deep research. The onus for trust-building rests on the
introduction of the tool and during the first use or first few uses of
the technology. Relatedly, some clinicians may be more personally
open to AI systems. For example, upon learning that the CDS was

powered by AI, NPPA 11 noted: “I’m welcome to learn anything and
I’m welcome to look at trends and I’m welcome to see how that would
affect my patient and my prescribing” (NPPA 11). We did not test
the marketing and onboarding of AI-supported CDS tools, but we
believe these first exposures to an AI-powered tool are important
future avenues to investigate for building trust in AI-powered tools.

4.3.2 Trust in the organization(s) and data powering AI models. For
healthcare technologies, clinicians often consider the potential in-
centives of the technology’s organization. For example, participants
described discomfort trusting a CDS tool for medication insights
if it was sponsored by pharmaceutical companies. However, if an
insurance company were providing the tool, NPPA 2 described that
she viewed the system similarly to a formulary (lists of medica-
tions covered by an insurance plan) viewed as canonical sources
of information. These perceptions demonstrate the importance of
clearly identifying the organization that developed the model as
well as understanding associated user expectations (e.g., the expec-
tation that medications recommended by an insurance company
be covered for a particular patient).

Participants also discussed trust in the data itself. Our prototype
used claims data in addition to labs andmedication fill records. Some
participants described previous experiences seeing the outputs of
claims data through other reports and technologies. Unfortunately,
some participants noted that these tools were often out of date or
inaccurate, whereas others felt that claims data was helpful. For
instance, “[Claims data] seems like the one that lags behind the most,
I mean, it seems like the most erroneous or inaccurate data thus far
that we see” (PCP 2) contrasts against PCP 1’s view:

“I think insurance claims data is very accurate. Most of
the time, you know, they’re putting together hemoglobin
A1cs from thousands of patients across the nation. You
know, I trust their data. They trust their data too. Cause
they’re making big money decisions based on that data.”
(PCP 1)

Similarly, other participants talked about data connectivity experi-
ences which led them to be more excited about an AI-support CDS
tool. Pharmacist 2 noted:

“I was a member of task force [for] our state to inter-
connect hospitals and labs and doctor’s offices. And we
actually got multimillion dollar grants from the federal
government to do that. And it’s a very similar concept
pulling in data from the global archives of that patient’s
record rather than just maybe an individual patient
record within our specific institution.” (Pharmacist 2)

Overall, previous experiences with tools built on certain types of
data are important context for technologists to understand, particu-
larly when those experiences have been negative. Even if the valid-
ity of the AI insights is shown and documented in peer-reviewed
research, if claims data in general is viewed negatively by providers,
then it is more difficult to build trust in a tool which pulls from these
databases. Our model ameliorated this somewhat by also pulling
from labs and medication fill records in addition to claims data.
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5 DISCUSSION
Our findings present the rich sociotechnical complexity of using a
CDS tool within the workflow of a clinical visit and critical facets
of trust when presenting an AI-based clinical decision support
technology. We discuss in Section 5.1 provider perspectives on AI
as a new form of knowledge production and in Section 5.2 six design
principles for AI-supported CDS systems.

5.1 Healthcare provider perspectives on AI as a
new form of knowledge production

As Vereschak et al. [61] state, building a “collaborative partnership
between human deciders and AI-embedded systems. . . critically
relies on trust from the users toward the systems.” Our paper’s
findings point to various factors affecting trust in CDS systems.
For example, our participants looked for validation of medication
recommendations from two places: guidelines put out by profes-
sional societies and papers published in (reputable) clinical journals.
Guidelines are seen as more solid recommendations, but clinicians
also recognize that the guidelines are slower to change than findings
from publications. For example, the American Heart Association
updates their Professional Standards of Care annually [3]. How-
ever, these guidelines do not necessarily reflect the latest research:
questions around the role of cardiac health in Long Covid-19, for
example, are being addressed in the medical literature [52], but
more than two years after the start of the pandemic they have not
yet made their way to the status of fully endorsed guidelines.

At a fundamental level, trust is vested in the underlying mech-
anisms of generating knowledge in clinical sittings, notably the
randomized clinical trial. The randomized clinical trial process it-
self is not without controversy [21] and has long been criticized
for its sometimes arguably weak relationship to the lived reality
of medical experience. Candidates signing up for a clinical trial
have been shown to be disproportionately more male, younger, and
sicker than the population who would use the clinical intervention
or drug in question [35]. Many clinical trials exclude individuals
with multiple conditions (e.g., both diabetes and cancer) [10]. Fur-
thermore, as clinical trials are often funded by the organization that
has developed the intervention or drug in question, be it corporate
or academic, their incentive is to show the efficacy and safety of
that drug, and not necessarily the effectiveness of that drug as it
would be prescribed and taken in conjunction with other drugs.
In the context of these limitations this work speaks to the clinical
area known as real-world evidence (RWE), based on analysis of
real-world data (RWD). RWE is “the clinical evidence regarding the
usage and potential benefits or risks of a medical product derived
from analysis of RWD. RWE can be generated by different study
designs or analyses, including, but not limited to, randomized trials,
including large simple trials, pragmatic trials, and observational
studies (prospective and/or retrospective)”[23]. The benefit of RWE
is that it provides insights into the use and outcomes of treatment
in everyday practice.

However, data need to be available in the first place for systems
to use that information. For instance, Wang et al. [63] noted that
in rural clinics in China, there is a major shortage of medical staff,
especially nurses who check blood pressure, record medical history,
take a person’s temperature, and more. Thus, for their CDS, the

authors note that “it is impossible for the clinicians to capture suffi-
cient information for AI-CDSS tomake accurate and comprehensive
diagnosis.” This deficit means that, depending on the purpose of
an AI-supported CDS, the level of personalized insights the system
is expected to support (e.g., diagnosis of an individual vs. recom-
mendations for medication for ‘people like you’) will necessitate
different types of required work to input new patient-specific data
over time.

We also found that providers’ individual perspectives regarding
the data underlying the models could influence the trust around
the outputs of an AI-supported CDS. This finding resonates with
recent literature calling for additional research to understand the
role of individual differences in trust such as prior experience and
self-confidence [61], general familiarity with AI/ML [32], and the
relationship between a person’s faith in and perception of the ca-
pability of automation [46]. Jacobs et al. [32] found that clinicians
with higher familiarity with ML were less likely to use an ML rec-
ommendation compared to clinicians with lower ML familiarity.
The variety of these trust-relevant topics point to the importance
of individual perceptions that may differ from clinician to clinician.
Thus, we recommend that strategies for developing appropriate lev-
els of trust in these models should be in part tailored to individual
users.

We join many other authors in this space (e.g., [13, 32, 46, 61])
to argue that as a new tool for knowledge discovery, AI-supported
CDS has an onus to build trust and impart some element of the
decision-making process to clinicians. The black box nature of many
previous and current AI systems does not easily engender trust,
and, in this relational sociotechnical experience between clinician,
CDS, and patient, a black box output does not provide a clinician
with persuasive rationale to communicate recommendations to
patients. Beyond better explanations, researchers, developers, and
designers of these tools also need to understand clinician needs
and support their efforts to integrate AI insights as part of their
overall decision-making process. Rarely will an AI-supported tool
be a clinician’s only decision support resource. Rather, they mix
different forms of knowledge. We need to consider how to support
a clinician making sense across multiple resources, for instance
across recent journal articles, AI tool(s), and other decision support
resources (e.g., norms within a clinic/hospital system; printed re-
sources on the wall; rules-based alerts). Specifically, many recent
articles have positioned AI tools in the singular, for instance stating
that a clinician must understand “the” AI system in relation to their
own knowledge and learn its capabilities. Yet it is likely that there
will be many AI-supported systems in the future, and so the com-
plexity of understanding each system as the technology ecosystem
grows is something to consider as we build future mental models
and training.

We must also acknowledge key fears discussed in the broader
literature regarding human-AI collaboration vs. concerns of re-
placement (e.g., [29, 55, 62]). The intention for our prototype is
to augment a clinician’s knowledge, not as a replacement. How-
ever, as recent CHI research shows, AI tools have begun to be
integrated into many decision-making contexts with high-stakes
outcomes including human resource management [50] and child
welfare work [34]. Given what we see in these domains, at some
future point, clinicians may be required to refer to AI-supported
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insights as part of their day-to-day work. We are at an early stage
of the likely long future trajectory of AI tools in medicine. Now is
the time to get the basics right to ensure future tools are developed
with an understanding of the broad sociotechnical complexities
of patient encounters and specific prescribing complexities within
clinician-patient conversations.

5.2 Design Principles for AI-Supported Clinical
Decision Support Systems

We present 6 design principles for development of this T2DM AI-
supported CDS system and similar tools:

(1) Account for what is possible and realistic for the patient
and the clinical context. Algorithms that over-optimize on
disease outcome metrics can lead to unrealistic insights.

(2) Give the clinician the ability to weigh patient-specific fac-
tors that cannot be easily inferred automatically; give the
clinician agency/control over model output.

(3) Do not introduce "research" tasks for clinicians into patient
visit workflow.

(4) The introduction of the AI tool is a core opportunity for trust
building.

(5) Create networked systems designed for collaborative use by
patients and healthcare staff throughout the patient’s care
pathways.

(6) Pinpoint where complex decisions need to take place in a
clinical workflow versus tools that provide blanket data that
physicians already know.

5.2.1 Account for what is possible and realistic for the patient and
the clinic context. Our research highlights the reality that algo-
rithms that over-optimize on disease outcome metrics can lead to
unrealistic insights. Medication insights need to balance elements
of biological efficacy, affordability, and patient lifestyles and pref-
erences. For example, field workers may be unable to keep insulin
at cold enough temperatures at work, and cardiothoracic surgeons
may want to avoid medications that increase urinary frequency.
We discussed the many considerations guiding medication selec-
tion in Section 4.1, including being able to adapt CDS insights and
workflows based on a clinic’s contextual constraints, as described
by several recent studies (e.g., [4, 63]). For instance, Wang et al.
[63] noted that rural Chinese clinics have very limited medications
in stock and that their studied AI-CDS suggested treatment op-
tions that clinicians could not prescribe. Clearly both clinicians
and AI-CDS sit between questions of what might be most optimal
medically and what is feasible realistically given contextual factors.
Thus, we must consider how to “personalize” insights to the specific
local context of the clinical settings. We add to the literature by
presenting a multi-design objective rationale through which filters
enable personalizing CDS insights to the patient.

5.2.2 Give the clinician the ability to weigh patient-specific fac-
tors that cannot be easily inferred automatically; give the clinician
agency/control over model output. As we highlighted with our pro-
totype iterations, there are many consideration factors relevant to
a clinician’s personalized medication recommendation for T2DM
management. AI CDS tools can help support that personalization
process. Critically, the clinician needs to know what the algorithm

is optimized for (the design objective [13]). When the design objec-
tive is clear, we contribute to the HCI literature by showing how
personalization can be refined. In the context of our CDS tool that
refining process operates through filters in the tool and through
shared decision-making between clinicians and patients and their
caregivers. As described in our Findings, medications are most use-
ful when they fit into a patient’s life. No matter how potentially
helpful a medication might be, if a patient cannot afford it or they
are unable to incorporate it into their daily routines, then it is not
a reasonable choice for them. We envision tools like our prototype
allowing a clinician to review potential future states with a patient
and discuss options while viewing the tool together, e.g., “I know
you don’t like injections, so we can achieve a similar improvement
in your A1c with this combination of oral medications” or “unfor-
tunately, without an injectable medication, it’s unlikely we can get
your A1c to goal.”

5.2.3 Do not introduce research tasks for clinicians into patient visit
workflow. As our findings and other related research [4, 63] show,
the patient encounter is not the best time for recommendations that
require time to evaluate. We described how our participants were
both unable to and uninterested in validating an AI-CDS’s insights
every time they used the prototype. This finding then prompts the
question: when and how might we most effectively surface CDS
insights? In their paper [60] observing providers using EHRs for di-
abetic prescribing at the Veteran’s Association in the United States,
Veinot et al. noted clinicians’ concerns that EHRs did not provide a
succinct summary of diabetes-relevant information all in one place.
Their clinician participants wanted to see this information during
the “priming” process where they read details about the patient dur-
ing the planning period before an upcoming visit. To address this
gap, perhaps the pre-visit review is an opportune time to highlight
AI-supported medication insights if there is a suggested improved
medication combination for a particular patient, although it may
diminish the opportunity for shared decision making.

5.2.4 The introduction of the AI tool is a core opportunity for trust
building. Given the current time constraints of patient visits, clini-
cians simply do not have the luxury to investigate and build trust
over time. Similarly, lack of training can mean that users are not
aware of useful features and may worsen transparency and trust is-
sues [63]. Therefore, the introduction and first uses of an AI CDS are
critical to get right. Clinician users will likely pay close attention to
both the initial user experience and contextual credibility as part of
their trust determination process. Cai et al. [14] have underscored
the importance of onboarding materials as key opportunities for
supporting human-AI collaboration and engendering trust. Con-
necting our findings to potential future onboarding materials as we
noted in Section 4.3, clinicians carried over their experiences with
other tools, such as those that use certain types of data (e.g., claims
data), as part of their initial reaction to any type of tool which used
those same data types. Therefore, we extend lines of thinking in
related literature to recommend that, in addition to sharing the
design objective(s) of the AI-supported CDS, there should also be
specific discussion of the data, particularly its acquisition process,
underlying the model as part of onboarding materials.
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5.2.5 Create networked systems designed for collaborative use by
patients and healthcare staff throughout the patient’s care pathways.
Clinicians have a rich set of activities that require interfacing with
a patient’s medical record and history over time. While much prior
work focuses on a single decision support period, revising prior
clinical decisions, sharing information across often fragmented
healthcare providers (both fragmented informationally with differ-
ent EHR systems, and organizationally through different special-
ties and focus areas), and sharing collaborative decision-making
discussions regarding an ever-changing health future all require
attention to the temporal elements of a person’s illness trajectory.
The prototype we tested in our study was designed to support
an in-the-moment decision by a certain healthcare practitioner in
consultation with a patient. However, we recognize that patients
may have many clinical encounters along their illness trajectories.
Patients may see many different clinicians and may be diagnosed
with other comorbid conditions over time. A decision made one
year by a primary care physician might need to be revisited by a
specialist physician a couple of years down the road, or vice versa.
Therefore, we must design CDS tools with this larger care team and
a networked approach in mind. Relatedly, extending this temporal
lens to the long-term use of the tool itself, AI-supported CDS will
also need to show accurate updated information when guidelines on
how to take medications shift over time, necessitating a connection
to ongoing research and knowledge.

While the prototype we investigated provided first-step visu-
alization about potential future illness trajectory biometrics, we
believe there is more needed work to support visualization of poten-
tial differences between treatment decisions to facilitate clinician
and patient discussion. As Burgess et al. [12] have noted, when pa-
tients managing a chronic disease think about treatment decisions,
they often envision a “future normal” of what their life will look
like down the road given their choice of treatment. The prototype
evaluated in this paper was designed with a clinician as the primary
user and A1c reduction over time as the primary visualization. As
we consider future design that may incorporate a patient as another
primary user, particularly within shared decision-making [25] pro-
cesses, there are other ways we might represent future trajectories.
For instance, a lowered A1c level might allow a person to achieve
future goals to be present for a grandchild’s graduation or other
future states they look forward to being able to do.

5.2.6 Pinpoint where complex decisions need to take place versus
tools that provide blanket data that physicians already know. In our
study, physicians noted that they did not usually struggle with
which diabetes medications to recommend. There is a limited set
of diabetes medications and if medications need to be changed,
many patients come in already having tried a few medications
previously, reducing the pool of potential future medication candi-
dates. However, the fact that the prototype tool is aimed towards
patients with poorly-controlled T2DM indicates that, so far, effec-
tive treatment regimens have not yet been tried for these patients.
Additionally, there are opportunities for other AI-supported CDS
medication prescribing technologies such as providing insights re-
garding experimental cancer medications which are constantly at
the cutting-edge of research, or as Jacobs et al. [31] advocate for:

treatment insights for depression when the first-line drugs (medi-
cations that are commonly recommended first to patients) fail to
be effective.

When there are many possible medication options, having a CDS
tool to help organize and make sense of the possibilities is helpful.
When the next-step choices are more constrained, whether that
be through cost and insurance coverage, the particular disease, or
other aspects, a CDS tool may be viewed as less helpful. One way
to approach this line of thinking is to consider the boundaries of a
clinician’s knowledge. For example, PCPs often see diabetic patients
and commonly prescribe both medication and recommend lifestyle
shifts to support A1c reduction. However, when their first-line
process is not successful, those second- and third-line medication
insights often havemore options that a clinicianmay be less familiar
with [56] and therefore the CDS can provide more perceived value.
Relatedly, Wang et al. [63] found that clinicians liked and used
a “similar case” feature allowing them to look up similar patient
cases from top-tier research hospitals, enabling self-educating and
learning in context. In contrast, an endocrinologist will be more
familiar with third- and fourth- line options, and, as an expert in
the field, will often be able to adopt new medications based on
clinical trials faster than an AI tool can learn from retrospective
patients, thus the CDS tool will likely have less perceived value
for specialists. Similarly, a focus of our prototype was showing
recommended combinations of medications, for which there is less
clinical trial evidence. There are undoubtedly more domains where
the benefits of AI can harmonize with the expertise of clinicians,
and we believe this should be a key focus area for future human-AI
trust research.

6 LIMITATIONS
This study presents the views of clinicians in the United States. We
noted U.S.-specific findings such as lack of clarity around the cost
of healthcare services (given the nation’s particular insurance and
pharmacy cost coverage elements). However, the central findings
of our paper regarding trust of AI results and comparison against
clinical trial findings are broadly applicable given the history of
medical training and how medical best practices are determined in
many other countries.

Second, this study introduced the prototype tool to clinicians in
the context of an interview study. This supported prototype devel-
opment through rapid iterations to match the needs of clinicians in
a patient visit. However, participant insights represent prospective
use gathered from a non-interactive prototype. Insights about trust
and confidence are based on participants’ impressions of seeing the
tool without interacting with real world data; therefore, validation
studies involving interactive and functional prototypes are needed
to better understand the potential influence they have on clinicians’
trust and confidence. To continue to explore how this tool would
be used in the clinic, the next step is to deploy a pilot to further
develop our understanding of its use.

Third, the prototype evaluated in this study is disease specific
to T2DM and the model was only trained on patients with an A1c
≥ 9%. The prototype did not combine insights across disease states
(e.g., if a person has both diabetes and chronic kidney disease).
As noted in our findings, medication considerations are impacted
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by comorbid conditions and thus these interrelated aspects are
important considerations for future design.

Fourth, in this study we analyzed the responses of 41 participants.
However, the collective framing may leave room for evaluated
nuances between different types of clinicians. For example, nurse
practitioners in our study saw the prototype being more valuable
for their day-to-day work than endocrinologists, which suggests
opportunities for differentiating interfaces and tools for explicit
subsets of the eventual clinical user population.

7 FUTUREWORK
Areas for future work include the medical-legal issues of following
AI-based CDS, e.g., whose fault is it if the AI is wrong? Participants
said they would be reluctant to make aggressive treatment deci-
sions that deviate from clinical guidelines. However, best practices
to support clinician interpretation of conflicting insights remain to
be determined (e.g., what if two AI models give different results?).
Jacobs et al.’s [32] study of medication selection for patients man-
aging depression demonstrates how AI/ML errors may negatively
influence clinical decisions and, specifically, that explanations did
not effectively address accuracy issues. The authors note that “in
addition to commonly discussed issues of technical readiness and
data bias, the interface design of ML decision support tools must be
systematically evaluated.” Participants mentioned the possibility of
litigation for medical malpractice as a driving factor behind some
of their decisions. As new tools are developed and become required
by certain healthcare systems, new medical malpractice laws will
likely emerge.

We also considered how to represent data and options in mean-
ingful units for clinicians. Tensions arose between the representa-
tions that were meaningful from the point of view of the data, and
representations that were more aligned with clinician’s views of the
world. For example, endocrinologists working with the data team
had suggested two categories to divide up age cohorts, over and
under 65 years. The data confirmed that there were no substantial
differences between a cohort defined as “<65” and subsets of that
cohort, such as “55-64” and “45-54”. However, when endocrinolo-
gists observed the prototype in the field, they were concerned that
insights for “<65” were too broad. Should the insights be split into
subsets to potentially be more trustworthy for the clinician using
the tool and confident that that insight was valid, or does that imply
more accuracy than was initially proposed?

This study did not include patient interviews, a population rel-
evant to this tool, which we plan to conduct in the future. For
instance, should patient-specific information be sent in advance of
a clinical encounter, for example, a notification that a medication
discussion will happen? This might allow appropriate time for pre-
reading if desired. And, if a clinician moves the screen in which
they are viewing the EHR to show the patient, how does this experi-
ence unfold and how can the visualization best support this work?
Similarly, as we consider explainability and interactivity from the
clinicians’ perspective, we should consider these factors from the
patients’ perspective as well. In Mitchell et al.’s [24] ML-powered
nutrition goal recommendation app, the authors suggest offering a
chatbot functionality to introduce concepts, answer user questions,
and more fully explain goal recommendations. They also note that

“a more interactive and conversational interaction style would also
offer another approach to address the challenges of context. . . to
allow participants to have input on their goals and negotiate.” De-
pending on the breadth of an AI-supported CDS, we might consider
having the patient be able to share insights about how well the
medication regimen fits into their everyday life through interac-
tion with, for example, a smartphone app, as one potential idea to
better surface contextual self-management concerns throughout a
person’s illness trajectory.

A technical question from this research is how to move from
population-level datasets to personalized prescribing insights that
appropriately reflect sociotechnical complexities. We believe that
this question is important and transferrable to other contexts. There
are multiple pieces to an AI-supported CDS. For example, the pro-
totype investigated in this study has underlying data, an AI model
trained on a sample of those data, and a software system incorporat-
ing the AI model’s output into an interface. Thus, there is a critical
distinction between the AI model and the software product. While
this is a familiar story in human-computer interaction, rhetoric
focused around the model itself may encourage conflation of the
AI model with its CDS tool, and thus a focus on optimization of the
AI model at the expense of implementation, a tension we believe is
a significant domain for future work.

When moving from a data-driven model to personalized insights,
there are two general approaches. The first is to integrate the im-
portant sociotechnical components discovered in research (e.g.,
lifestyle factors, patient preferences, cost) directly into the model
itself. The second is to use the same population-level model, but in-
tegrate a secondary stage in the product where user characteristics
are inputted (e.g., via filters) to create more personalized insights.
The first approach, when focused on a specific output like A1c, may
have a cleaner output and be possibly more interpretable. Then,
additional elements can be integrated using a simple rules-based
filter (e.g., fear of needles). This work did not evaluate the sec-
ond process – integrating sociotechnical components directly into
the model itself. For instance, we might imagine a model which
integrates weighted outcomes of medication on different organ
systems. However, such a model then raises questions about how
the weighting process is conducted and what the output means
regarding the eventual care recommendation. Thus, how best to
account for issues that are inherently situational (e.g., personaliza-
tion) is an intriguing area for future research within the context of
AI-supported insights reflected in prototype design iterations.

8 CONCLUSION
In this paper, we explored the following questions: How do clin-
icians make sense of AI-created insights in relationship to other
treatment recommendation information? Moreover, how do they
develop trust in these insights, given what they know about other
ways of creating knowledge in the world, for instance, through a
clinical trial? We used rapidly iterated conceptual prototypes based
on AI-generated treatment insights for Type 2 diabetes mellitus to
elicit feedback from 41 U.S.-based healthcare staff, including pri-
mary care, internal medicine and endocrinologist physicians, nurse
practitioners, physician assistants, and pharmacists. Critically, we
found that AI systems are judged against “gold standard” previous
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methods of clinical knowledge generation, in particular, random-
ized controlled clinical trials. We discuss how confidence or trust
in the insights may be influenced by the providers’ understanding
and confidence in the methods used to generate the insight, a ma-
jor focus of explainable AI work. We describe findings regarding
decision optimization tensions between population-level and per-
sonalized insights, and patterns of use and trust of AI systems. We
discuss healthcare provider perspectives on AI as a new form of
knowledge production and conclude with six design principles for
AI-supported CDS systems.
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